Classify samples from multiple centroids

classify_multiple(prob_matrix, centroid._list, distancetype = "pearson")

Arguments

prob_matrix

a matrix or data.frame. Must be an expression matrix with features in rows and samples in columns

centroid._list

alist with the centroid matrix for each of the signatures to evaluate, where each column represents the prototypic centroid of a subtype and each row the constituents features of the solution signature. The output of create_centroids can be used.

distancetype

a character that can be either 'pearson' (default), 'spearman' or 'kendall'.

Value

Returns a data.frame with the classes assigned to each sample in each signature, were samples are a rows and signatures in columns

Examples

if (FALSE) { # Load data rna_luad <- use_rna_luad() TCGA_expr <- rna_luad$TCGA$expression_matrix TCGA_clinic <- rna_luad$TCGA$pheno_data OS <- survival::Surv(time = TCGA_clinic$time, event = TCGA_clinic$status) # Run galgo output <- galgoR::galgo(generations = 10, population = 30, prob_matrix = TCGA_expr, OS = OS) RESULTS <- non_dominated_summary( output = output, OS = OS, prob_matrix = TCGA_expr, distancetype = "pearson", usegpu = FALSE ) CentroidsList <- create_centroids(output, RESULTS$solution, train.set = TCGA_expr) TCGA_classes <- classify_multiple(prob_matrix = TCGA_expr, centroid._list = CentroidsList) }