galgo
accepts an expression matrix and a
survival object to find robust gene expression signatures related to a
given outcome
galgo (population = 30, generations = 2, nCV = 5, distancetype = "pearson", TournamentSize = 2, period = 1825, OS, prob_matrix, res_dir = "", start_galgo_callback = callback_default, end_galgo_callback = callback_base_return_pop, report_callback = callback_base_report, start_gen_callback = callback_default, end_gen_callback = callback_default, verbose = 2)
population | a number indicating the number of solutions in the population of solutions that will be evolved |
---|---|
generations | a number indicating the number of iterations of the galgo algorithm |
nCV | number of cross-validation sets |
distancetype | character, it can be
|
TournamentSize | a number indicating the size of the tournaments for the selection procedure |
period | a number indicating the outcome period to evaluate the RMST |
OS | a |
prob_matrix | a |
res_dir | a |
start_galgo_callback | optional callback function for the start of the galgo execution |
end_galgo_callback | optional callback function for the end of the galgo execution |
report_callback | optional callback function |
start_gen_callback | optional callback function for the beginning of the run |
end_gen_callback | optional callback function for the end of the run |
verbose | select the level of information printed during galgo execution |
an object of type 'galgo.Obj'
that corresponds to a list
with the elements $Solutions
and $ParetoFront
.
$Solutions
is a \(l x (n + 5)\) matrix where \(n\) is the number
of features evaluated and \(l\) is the number of solutions obtained.
The submatrix \(l x n\) is a binary matrix where each row represents
the chromosome of an evolved solution from the solution population, where
each feature can be present (1) or absent (0) in the solution.
Column \(n +1\) represent the \(k\) number of clusters for each
solutions. Column \(n+2\) to \(n+5\) shows the SC Fitness and
Survival Fitness values, the solution rank, and the crowding distance of
the solution in the final pareto front respectively.
For easier interpretation of the 'galgo.Obj'
, the output can be
reshaped using the to_list
and
to_dataframe
functions
#> Warning: object 'transbig' not foundexpression <- Biobase::exprs(Train) clinical <- Biobase::pData(Train) OS <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs) # We will use a reduced dataset for the example expression <- expression[sample(seq_len(nrow(expression)), 100), ] # Now we scale the expression matrix expression <- t(scale(t(expression))) # Run galgo output <- GSgalgoR::galgo(generations = 5, population = 15, prob_matrix = expression, OS = OS)#>#>#> k rnkIndex CrowD #> result.3 2 0.14882360 69.46322 1 Inf #> result.4 9 0.00656122 264.62890 1 Inf #> result.10 4 0.07773017 192.97399 1 1.695167#>#> k rnkIndex CrowD #> result.3 2 0.14882360 69.46322 1 Inf #> result.1 7 0.02571842 372.07256 1 Inf #> result.10 4 0.07773017 192.97399 1 1.106057 #> result.13 5 0.03596436 205.87446 1 0.824781#>#> k rnkIndex CrowD #> result.3 2 0.14882360 69.46322 1 Inf #> result.1 7 0.02571842 372.07256 1 Inf #> 4 0.06304767 212.49021 1 0.8401363 #> 3 0.08357203 77.11589 1 0.8206758 #> result.10 4 0.07773017 192.97399 1 0.5063178#>#> k rnkIndex CrowD #> result.3 2 0.14882360 69.46322 1 Inf #> result.1 7 0.02571842 372.07256 1 Inf #> 4 0.06304767 212.49021 1 0.8494499 #> 3 0.08357203 77.11589 1 0.8334064 #> result.10 4 0.07773017 192.97399 1 0.5099930#>#> k rnkIndex CrowD #> result.1 7 0.02571842 372.07256 1 Inf #> 2 0.16568616 44.93058 1 Inf #> 2 0.13112577 85.75740 1 0.6696392 #> 8 0.04581630 287.44268 1 0.6687258 #> 2 0.08329750 164.24513 1 0.6272345 #> 4 0.06304767 212.49021 1 0.4575554 #> result.3 2 0.14882360 69.46322 1 0.3282574 #> result.10 4 0.07773017 192.97399 1 0.2585055