The function uses a 'galgo.Obj'
as input an the training dataset to
evaluate the non-dominated solutions found by GalgoR
non_dominated_summary (output, prob_matrix, OS, distancetype = "pearson")
output | An object of class |
---|---|
prob_matrix | a |
OS | a |
distancetype | a |
Returns a data.frame
with 5 columns and a number of rows
equals to the non-dominated solutions found by GalgoR.
The first column has the name of the non-dominated solutions, the second
the number of partitions found for each solution (k)
, the third,
the number of genes, the fourth the mean silhouette coefficient of the
solution and the last columns has the estimated C.Index for each one.
#> Warning: object 'transbig' not foundexpression <- Biobase::exprs(Train) clinical <- Biobase::pData(Train) OS <- survival::Surv(time = clinical$t.rfs, event = clinical$e.rfs) # We will use a reduced dataset for the example expression <- expression[sample(1:nrow(expression), 100), ] # Now we scale the expression matrix expression <- t(scale(t(expression))) # Run galgo output <- GSgalgoR::galgo(generations = 5, population = 15, prob_matrix = expression, OS = OS)#>#>#> k rnkIndex CrowD #> result.3 10 0.007732375 300.22227 1 Inf #> result.6 2 0.079683053 114.82603 1 0.9345213 #> result.7 3 0.046522310 258.96886 1 0.9969431 #> result.8 2 0.054135993 139.64458 1 0.8164309 #> result.10 2 0.108544837 17.61128 1 Inf#>#> k rnkIndex CrowD #> result.3 10 0.007732375 300.22227 1 Inf #> result.10 2 0.108544837 17.61128 1 Inf #> result.7 3 0.046522310 258.96886 1 0.8936328 #> result.15 3 0.055867534 173.36262 1 0.8164309 #> result.6 2 0.079683053 114.82603 1 0.7214736 #> result.7 2 0.079895228 32.20750 1 0.6106585#>#> k rnkIndex CrowD #> result.10 2 0.10854484 17.61128 1 Inf #> 10 0.01096230 362.04141 1 Inf #> 9 0.01867938 262.60431 1 0.6172496 #> result.6 2 0.07968305 114.82603 1 0.6171755 #> 2 0.09044218 67.58557 1 0.5389540 #> 3 0.06219391 194.75203 1 0.5291710 #> result.7 3 0.04652231 258.96886 1 0.4483810 #> 4 0.05300474 215.75086 1 0.3246603#>#> k rnkIndex CrowD #> result.10 2 0.10854484 17.61128 1 Inf #> 10 0.01096230 362.04141 1 Inf #> result.6 2 0.07968305 114.82603 1 0.6023189 #> 9 0.01867938 262.60431 1 0.5961395 #> 2 0.09044218 67.58557 1 0.5223930 #> 3 0.06219391 194.75203 1 0.5143302 #> result.7 3 0.04652231 258.96886 1 0.4257805 #> 4 0.05300474 215.75086 1 0.3161506#>#> k rnkIndex CrowD #> result.10 2 0.10854484 17.61128 1 Inf #> 10 0.01096230 362.04141 1 Inf #> result.6 2 0.07968305 114.82603 1 0.6472026 #> 2 0.09044218 67.58557 1 0.5663781 #> 3 0.06219391 194.75203 1 0.5556213 #> result.7 3 0.04652231 258.96886 1 0.4741542 #> 9 0.01861714 288.55789 1 0.3644509 #> 9 0.01867938 262.60431 1 0.3608129 #> 4 0.05300474 215.75086 1 0.3406886non_dominated_summary( output = output, OS = OS, prob_matrix = expression, distancetype = "pearson" )#>#> solution k ngenes mean.Silhouette C.Index #> 1 Solutions.1 2 31 0.112025114443578 0.507455621301775 #> 2 Solutions.2 10 97 0.0364310198749159 0.569546351084813 #> 3 Solutions.3 2 29 0.104834965896548 0.543431952662722 #> 4 Solutions.4 2 38 0.0915702920943417 0.546390532544379 #> 5 Solutions.5 3 31 0.0893140649529412 0.576489151873767 #> 6 Solutions.6 3 99 0.0554520484940408 0.517041420118343 #> 7 Solutions.7 9 78 0.0546146535826552 0.57491124260355 #> 8 Solutions.8 9 48 0.0693944471829513 0.563313609467456 #> 9 Solutions.9 4 60 0.0667301939419838 0.550611439842209